Anxiety Zone Forums | Login | Register | Announcements | Introduce Yourself | The Lounge | Inspiration Place | Generalized Anxiety Disorder (GAD) | Hypochondria (Health Anxiety) | Panic Disorder and Agoraphobia | Clinical Depression | Specific Phobias | Post-Traumatic Stress Disorder (PTSD) | Social Anxiety Disorder | Obsessive-Compulsive Disorder (OCD) | Other Mental Health Issues | Sleep Disorders | Fibromyalgia & Chronic Fatigue Syndrome (CFS) | Digestive Disorders | Medications and Therapy | Addiction and Recovery | Relationship Issues | The Anxiety Zone Arcade | Conditions Index | Drug Index | Glossary | Symptoms | Therapies | Latest Health News | Member Articles | Member Blogs | Member Gallery | Chat Rooms (Reg. required.) | Search | Community Guidelines

Support Forums And Chats For Generalized Anxiety Disorder (GAD), Hypochondria, Panic Disorder, Clinical Depression, Specific Phobias, Post-Traumatic Stress Disorder (PTSD), Social Anxiety Disorder and Obsessive-Compulsive Disorder (OCD).
- Click on the banner above to visit the Anxiety Zone forums -

Fight-or-flight response

The flight or fight response, also called the "acute stress response", was first described by Walter Cannon in the 1920s as a theory that animals react to threats with a general discharge of the sympathetic nervous system. The response was later recognized as the first stage of a general adaptation syndrome that regulates stress responses among vertebrates and other organisms.

The onset of a stress response is associated with specific physiological actions in the sympathetic nervous system, both directly and indirectly through the release of epinephrine and to a lesser extent norepinephrine from the medulla of the adrenal glands. The release is triggered by acetylcholine released from pre-ganglionic sympathetic nerves. These catecholamine hormones facilitate immediate physical reactions by triggering increases in heart rate and breathing, constricting blood vessels in many parts of the body - but not in muscles (vasodilation), brain, lungs and heart - and tightening muscles. An abundance of catecholamines at neuroreceptor sites facilitates reliance on spontaneous or intuitive behaviors often related to combat or escape.

Normally, when a person is in a serene, unstimulated state, the "firing" of neurons in the locus ceruleus is minimal. A novel stimulus, once perceived, is relayed from the sensory cortex of the brain through the thalamus to the brain stem. That route of signaling increases the rate of noradrenergic activity in the locus ceruleus, and the person becomes alert and attentive to the environment.

If a stimulus is perceived as a threat, a more intense and prolonged discharge of the locus ceruleus activates the sympathetic division of the autonomic nervous system (Thase & Howland, 1995). The activation of the sympathetic nervous system leads to the release of norepinephrine from nerve endings acting on the heart, blood vessels, respiratory centers, and other sites. The ensuing physiological changes constitute a major part of the acute stress response. The other major player in the acute stress response is the hypothalamic-pituitary-adrenal axis.


The information above is not intended for and should not be used as a substitute for the diagnosis and/or treatment by a licensed, qualified, health-care professional. This article is licensed under the GNU Free Documentation License. It incorporates material originating from the Wikipedia article "Fight-or-flight response".

Copyright © 2012 Anxiety Zone - Anxiety Disorders Forum. All Rights Reserved.